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Abstract. Nearest neighbour search is one of the most simple and used
technique in Pattern Recognition.
One of the most known fast nearest neighbour algorithms was proposed
by Fukunaga and Narendra. The algorithm builds a tree in preprocess
time that is traversed on search time using some elimination rules to
avoid its full exploration.
This paper tests two new types of improvements in a real data environ-
ment, a spelling task. The first improvement is a new (and faster to build)
type of tree, and the second is the introduction of two new elimination
rules.
Both techniques, even taken independently, reduce significantly both: the
number of distance computations and the search time expended to find
the nearest neighbour.

1 Introduction

The Nearest Neighbour Search method consists on finding the nearest point of
a set to a given test point using a distance function [3].

To avoid the exhaustive search many effective algorithms have been devel-
oped [1]. Although some of such algorithms as K-dtrees, R-trees, etc. depend on
the way the points are represented (vectors usually), in this paper we are going
to focus on algorithms that does not make any assumption on the way the points
are represented making them suitable to work in any metric space.

The most popular and refereed algorithm of such type was proposed by Fuku-
naga and Narendra (FNA) [4]. Although some recently proposed algorithms are
more efficient, the FNA is a basic reference in the literature and in the develop-
ment of new rules to improve the main steps of the algorithm that can be easily
extended to other tree based algorithms [2, 6, 9].
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Recently we proposed some improvements in this algorithm [11] that reduce
significantly the number of distance computations. However, those improvements
were tested only with data represented in a vector space. In this work the algo-
rithm is checked in a spelling task where the points are represented by strings
and the distance function is the edit distance. Also we compare our proposal
with Kalantari and McDonalds method as well as with FNA.

2 The Fukunaga and Narendra Algorithm

The FNA is a fast search method that uses a tree structure. Each node p of the
tree represents a group of points Sp, and is characterised by a point Mp ∈ Sp,
(the representative of the group Sp), and its distance Rp of the farthest point in
the set (the radius of the node). The tree is built using recursively the c-means
clustering algorithm.

When a new test point x is given, its nearest neighbour n is found in the tree
using a first-depth strategy. Among the nodes at the same level, the node with
a smaller distance d(x, Mp) is searched earlier. In order to avoid the exploration
of some branches of the tree, the FNA uses a prune rule.

Rule: if n is the nearest neighbour to x up to the moment, no y ∈ Sp can be
the nearest neighbour to x if

d(x, n) + Rp < d(x, Mp)

This rule will be referenced as the Fukunaga and Narendra’s Rule (FNR)
(see fig. 1 for a graphical interpretation).

The FNA defines another rule in order to avoid some distance computations
in the leaves of the tree. In this work only binary trees with one point on the
leaves are considered. On such case the rule related to leaf nodes becomes a
special case of the FNR and will not be considered on the following.

Mp x

n

Rp
Sp

Fig. 1. Original elimination rule used in the algorithm of Fukunaga and Narendra
(FNR).
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3 The Search Tree

In previous works [11] some approximations were developed as an alternative
to the use of the c-means algorithm on the construction of the tree. The best
behaviour was obtained by the method called Most Distant from the Father tree
(MDF). In this work this strategy is compared with c-means strategy1 and with
the incremental strategy to build the tree proposed by Kalantari and McDon-
alds [5], since this last strategy builds a binary tree similar to ours. Given a set
of points, the MDF strategy consists on

– randomly select a point as the representative of the root node;
– in the following level, use as representative of the left node the representative

of the father node. The representative of the right node is the farthest point
among all the points belonging to the father node;

– classify the rest of the prototypes in the node of their nearest representative;
– recursively repeat the process until each leaf node has only one point, the

representative.

This strategy reduces the computation of some distances in the search proce-
dure as the representative of the left node is the same than the representative of
its father. Each time a expansion of the node is necessary, only one new distance
should be computed. Note that the construction of this tree is much faster than
the construction of the FN tree where the c-means algorithm is used recursively.

While in the MDF method the average time complexity is O(n log(n)), in
the case that c-means algorithm is used, the average complexity is O(n2 log(n)).

4 The New Elimination Rules

In the proposed rules, to eliminate a node �, also information related with the
sibling node r is used.

el
Ml Mr

x

n

l r

Fig. 2. Sibling based rule (SBR).

1 As data are strings, the mean of a set of points can’t be obtained. In this case the
median of the set is used (c-medians).
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4.1 The Sibling Based Rule (SBR)

The main idea of this rule is to use the distance from the representative to the
nearest prototype of the sibling node. If this distance is too big, the sibling node
can be safely ignored. Kamgar-Parsi and Kanal [10] proposed, for the FN al-
gorithm, a similar rule (KKR), but the distance from the mean to the nearest
prototype in the node was used. Note that in our case the representative is al-
ways a prototype in the node, then this distance is always zero. Moreover, in our
case the rule allows the pruning of the sibling node, in the KKR case is the own
node that can be pruned.
A first proposal requires that each node r stores the distance between the rep-
resentative of the node, Mr, and the nearest point, e�, in the sibling node �.

Definition 1. Definition of SBR: given a node r, a test sample x, an actual
nearest neighbour n, and the nearest point to the representative of the sibling
node �, e�, the node � can be pruned if the following condition is fulfil (fig. 2):

d(Mr, e�) > d(Mr, x) + d(x, n)

Unlike the FNR, SBR can be applied to eliminate node � without compute
d(M�, x). That permits to avoid some distance computations in the search pro-
cedure.

4.2 Generalised Rule (GR)

This rule is an iterated combination of the FNR and the SBR. Given a node �,
a set of points {ti} is defined in the following way:

G1 = S�

ti = argmaxp∈Gi
d(p, M�)

Gi+1 = {p ∈ Gi : d(p, Mr) < d(ti, Mr)}

where Mr is the representative of the sibling node r, and Gi are auxiliary sets
of points needed in the definition (fig. 3). In preprocessing time, the distances
d(Mr, ti) are stored in each node �. In the same way, this process is repeated for
the sibling node.

Definition 2. Definition of GR: given two sibling nodes � and r, a test sample
x, an actual nearest neighbour n, and the list of point t1, t2, . . . , ts, the node �
can be pruned if there is an integer i such that:

d(Mr, ti) ≥ d(Mr, x) + d(x, n) (1)
d(M�, ti+1) ≤ d(M�, x) − d(x, n) (2)

Cases i = 0 and i = s are also included not considering equations (1) or (2)
respectively. Note that condition (1) is equivalent to SBR rule when i = s and
condition (2) is equivalent to FNR rule when i = 0.
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Fig. 3. Generalised rule (GR).

5 Experiments

To show the performance of the algorithm some tests were carried out on a
spelling task. A database of 38000 words of a Spanish dictionary was used. The
input test of the speller was simulated distorting the words by means of random
insertion, deletion and substitution operations over the words in the original
dictionary. The edit distance was used to compare the words.

Increasing size of dictionaries (from 1000 to 38000, 9 different sizes) was
obtained extracting randomly words of the whole dictionary. The test points
were 1000 distorted words obtained from randomly selected dictionary words.
To obtain reliable results the experiments were repeated 10 times. The averages
and the standard deviations are showed on the plots. The distance computation
is referenced per test point, and the search time per test set.

In order to study the contribution of the elimination rules FNR, FNR+SBR
and GR a first set of experiments were carried out using the original c-means
tree construction of the FN algorithm (fig. 4).

As was expected, the addition of the SBR reduces slightly the number of
distance computations and the search time, but GR reduces them drastically
(to less than one half).

A second set of experiments were carried out in order to compare the MDF
method of tree construction to the original c-means method (using the FNR)
and to the incremental strategy proposed by Kalantari and Mc-Donalds (KM).

Figure 5 illustrates the average number of distance computations and the
search time using the c-means, KM and MDF tree construction methods. It can
be observed that the MDF reduces to less than one half the number of distance
computation and the search time.
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Fig. 4. Comparison of FNR, FNR+SBR and GR elimination rules using the c-medians
tree construction.
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Fig. 5. Comparison of c-medians, KM and MDF methods to build the tree using the
FNR elimination rule.
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Fig. 6. Comparison of FNR, FNR+SBR and GR using a tree constructed with MDF.

Once stated that the MDF method is superior that the c-means method, a
third set of experiments were carried out in order to study the contribution of
FNR, FNR+SGR and GR with a tree constructed following MDF method.

As figure 6 shows, the number of distance computations and the search time
decrease using the new rules although now the reductions are not so impressive
that in the previous cases.
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Nevertheless, comparing the distance computations and the search time of the
original algorithm (fig. 4, FNR) to the algorithm using GR and MDF (fig. 6,GR),
it can be observed that applying both techniques at the same time the distance
computations and the search time can be reduced one third.

6 Conclusions

In this work two improvements of the Fukunaga and Narendra fast nearest neigh-
bour algorithm was tested in a spelling correction task.

The first improvement is a new method to build the decision tree used in
the FN algorithm. On one hand, to build the tree with this method it is much
faster than with the original one and, on the other hand, the use of this method
reduces the number of distance computations and the search time to one half in
our experiments. The use of the KM way to build the tree increases the number
of distance computations even more than with the original method. The second
modification is the introduction of two new elimination rules. The use of the GR
rule reduces to one half the number of distance computations and the search
time. Both improvements can be applied together reaching reductions to one
third in the distance computations and the search time.

On this work the generalised elimination rule was implemented in a quite
naive way by means of an iterative procedure. Now we are interested in imple-
menting this rule using a more adequate algorithm to obtain further search time
reductions.

We believe that these approximations can be extended to other nearest neigh-
bour search algorithms based on a tree structure.
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